Higher Order Local Accuracy by Averaging in the Finite Element Method

نویسنده

  • A. H. Schatz
چکیده

Let u^ be a Ritz-Galerkin approximation, corresponding to the solution u of an elliptic boundary value problem, which is based on a uniform subdivision in the interior of the domain. In this paper we show that by "averaging" the values of Uu in the neighborhood of a point x we may (for a wide class of problems) construct an approximation to u(x) which is often a better approximation than UyAx) itself. The "averaging" operator does not depend on the specific elliptic operator involved and is easily constructed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel modification of decouple scaled boundary finite element method in fracture mechanics problems

In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...

متن کامل

Mixed finite element formulation enriched by Adomian method for vibration analysis of horizontally curved beams

Abstract: The vibration analysis of horizontally curved beams is generally led to higher order shape functions using direct finite element method, resulting in more time-consuming computation process. In this paper, the weak-form mixed finite element method was used to reduce the order of shape functions. The shape functions were first considered linear which did not provide adequate accuracy....

متن کامل

Hygrothermal Analysis of Laminated Composite Plates by Using Efficient Higher Order Shear Deformation Theory

Hygrothermal analysis of laminated composite plates has been done by using an efficient higher order shear deformation theory. The stress field derived from hygrothermal fields must be consistent with total strain field in this type of analysis. In the present formulation, the plate model has been implemented with a computationally efficient C0 finite element developed by using consistent strai...

متن کامل

An oscillation-free adaptive FEM for symmetric eigenvalue problems

A refined a posteriori error analysis for symmetric eigenvalue problems and the convergence of the first-order adaptive finite element method (AFEM) is presented. The H stability of the L projection provides reliability and efficiency of the edge-contribution of standard residual-based error estimators for P1 finite element methods. In fact, the volume contributions and even oscillations can be...

متن کامل

Updating finite element model using frequency domain decomposition method and bees algorithm

The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010